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LETI’ER TO THE EDITOR 

Renormalisation group recursions by mean-field 
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Abstmd. Within a renormalisation group strategy, different ‘rescaled’ mean-field approxi- 
mations for the magnetisation are combined. Good qualitative estimates are obtained for 
the critical properties of classical and quantum spin systems. A particularly simple realisa- 
tion of the method yields recursions for arbitrary dimensionality d. The critical couplings 
are remarkably accurate for all d, and have the correct asymptotic behaviour for d 
approaching infinity. 

In this Letter we present a new, efficient and easily applicable method for computing 
critical properties of lattice spin systems. Our approach is close in spirit to the so 
called ‘phenomenological’ renormalisation, based on the comparison of systems of 
different finite sizes (Nightingale 1976, 1977, Sneddon 1978). At the same time, our 
calculations are directly related to approximations of mean-field type for the equation 
of state. We show explicitly how a renormalisation strategy can improve on mean-field 
results, without involving further calculational effort. Some of the simplest realisations 
of our method also have a direct formal connection with more standard real-space 
renormalisation techniques (Niemeijer and van Leeuwen 1976) and we find it instruc- 
tive to exploit this feature to introduce the general approach. 

Let us consider, for simplicity, the case of a ferromagnetic Ising system on a 
d-dimensional hypercubic lattice. 

The reduced Hamiltonian is 

-PX(s)  = H ( s )  = K 1 sisj + h 1 si 
(11) I 

where s, = *l, = l /kBT,  K is the nearest-neighbour coupling and h the magnetic 
field. 

By the standard machinery of real-space renormalisation, we can transform H ( s )  
into a renormalised H’(s’) appropriate to a system with spins s’ on a lattice rescaled 
by a factor 1 with respect to the original one. One way of achieving this, with, for 
example, I = 2, consists in using a linear weight factor (Wilson 1975, Niemeijer and 
van Leeuwen 1976) 

P ( s ’ , s ) = n 2 ( 1 + p s b  1 c Si )  

P ita 
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where a runs over hypercubic cells of 2d spins, into which we divide the lattice, and 
p is a parameter whose value is connected to the correlation function exponent 11. 

H’(s’) can be computed on the basis of a cumulant expansion in the inter-cell 
interactions (Niemeijer and van Leeuwen 1976). Up to first order in these interactions, 
H‘(s’) stays of the form ( l ) ,  with K’ and h’ parametrically dependent on p. 

Linearising the transformation in h around h = 0 and indicating (8z’ /ah) lh=o by 
AH(K), hyperscaling implies that at the fixed point K* (Wilson 1975) 

pAH(K*) = 1. (3) 
This suggests that p can be eliminated from the transformation by imposing (3) to 
hold identically for all K. One can see that the K dependence of p introduced in this 
way also guarantees the important property AH+2d for K+m, which allows the 
existence of spontaneous magnetisation (Nienhuis and Nauenberg 1975). Computing 
K’ and AH in the cumulant expansion up to first and zeroth orders, respectively, we 
obtain the transformation 

K ‘  = $Kf(K) (4) 

( 5 )  d / 2  112 h ‘ = A ~ ( K ) h = 2  f ( K ) h  
with 

where ( )O is a zero-field cell average. 
We now propose an alternative way of arriving at this result. The following 

derivation exemplifies the basic steps of our method. Let us consider two finite 
systems: a single spin and a hypercube with 2d spins. For both systems we can compute 
the average magnetisation in the presence of symmetry-breaking boundary conditions, 
which, in a mean-field sense, simulate the effect of surrounding spins in infinite 
extensions of the systems. The single spin interacts with 2d nearest-neighbour spins 
fixed to a value b’ ( lb’ l s l ) ,  whereas each spin in the hypercube interacts with d 
boundary spins, whose value is b (IblS1). Let us indicate by f~ (f2) the function of 
the couplings and of b’ (b), expressing the magnetisation per spin in the smaller 
(bigger) system. We can define a renormalisation mapping implicitly (in the neighbour- 
hood of h = 0) by imposing 

to leading orders in h and b, for b approaching zero. 
Omitting the b’ and b dependences and the subscripts, equation (7) would represent 

the transformation law for the magnetisation of the infinite system (to be indicated 
just by f) under the renormalisation mapping induced by (2) .  The quantities b and 
b’ are related by the same law through (8), because they have the physical meaning 
of magnetisations. This meaning becomes clear by the observation that, for example, 
by equating fi to b‘ itself, we obtain the mean-field equation of state for the system. 
Replacing f1 by f2 and equating it to b, we also obtain an equation of state of the 
mean-field type, in which fluctuations within hypercubes of 2d spins are taken into 
account. 
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One can now show that the recursions implied by (7) and (8) are precisely (4) and 
( 5 ) .  by linearising in b, 6' and h, putting h ' =  A H h  and assuming again that the 
hyperscaling relation (3) holds identically for all K. By imposing scaling requirements 
on approximations for the magnetisation, characterised by different 'typical lengths', 
we thus obtain in the above example the same results as by explicit elimination of 
degrees of freedom. The feature of working in the neighbourhood of b and b' equal 
to zero is appropriate to the study of second-order transitions. A generalisation of 
our methods to the description of first-order transitions should allow for finite b and 
b' values. 

We have applied the simple scheme described above to d = 1,2 and 3 king models. 
In one dimension we obtain only the K* = 00 and K* = 0 fixed points, as we should+. 

For d = 2 and 3 the results are reported in the rows of table 1 where L = 2 and 
L' = 1. These results indicate a rather satisfactory standard of qualitative accuracy in 
comparison with other real-space methods of similar complexity. It is also interesting 
to note the drastic improvement of our calculation with respect to the corresponding 
mean-field approximations. For example, in the case d = 2, the mean-field calculation 
gives K, = 0.250, the improved one, using fi, gives K, = 0.286, whereas our result is 
much closer to the exact value. 

TaMe 1. Results for the classical Ising model 

d = 2  2 1 0.361 0.69 1 .so 
3 2 0.381 0.78 1.57 
4 3 0.393 0.82 1.60 
5 4 0.401 0.84 1.62 

Exact 0.441 1.000 1.875 

d = 3  2 1 0.207 0.82 2.00 
3 2 0.212 0.95 2.08 

0.214' 1.587h 2.485h 

a Domb (1974). 
'Le Guillou and Zinn-Justin (1980). 

The above presentation suggests very naturally how to generalise our recipe to 
systems of bigger sizes and hopefully improve the accuracy. Let us consider two finite 
hypercubic systems with N' = L f d  and N = Ld spins, respectively. We introduce sym- 
metry-breaking boundary conditions as before and compute the average magnetisa- 
tions per spin, indicated by fL- and fL. In order to define the transformation, we 
impose (7) and (8), replacing 1 and 2 by L' and L, respectively, and 2d by (L/L' )d .  
We remark that as soon as L > 2, the formal connection with cumulant approximations 
for linear transformations is lost, owing to the presence of non-equivalent spins in 
the cells and to the possibility of realising non-integer rescalings (I = L/L' ) .  In the 

t In this simple approximation, only the yH exponent is given correctly at the K' = CO fixed point in d = 1. 
In order to obtain also the exact yT, one must perform a different calculation, involving the comparison 
of two chains with L and L' = L - 1 spins, respectively, in the limit L + CO. 
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general case, our scheme is equivalent to treating the inter-cell interactions in an 
effective-field approximation, within the framework of a linear renormalisation trans- 
formation. Non-integer rescalings can then be obtained by combining two transforma- 
tions with integer rescalings. 

In order to test the convergence of the method as the sizes of the systems increase, 
we performed calculations on a sequence of boxes with L = 2 , 3 , 4  and 5 in d = 2, and 
L = 2  and 3 in d = 3 .  As usual in calculations involving systems of finite sizes, the 
best results for a given L are obtained for L' = L - 1.  These results are reported in 
table 1 .  Although the boxes considered are quite small, the results already show a 
definite, even if slow, convergence towards exact or expected results, especially for 
K,. It would certainly be interesting to set up similar calculations on systems of bigger 
sizes, for example with the help of Monte Carlo or transfer matrix techniques. In this 
way, the efficiency of our method could be compared with that of finite-size scaling 
(Nightingale and Blote 1980) or phenomenological renormalisation approaches 
(Nightingale 1976, 1977, Sneddon 1978). 

We believe that among the most interesting features of our approach are its peculiar 
use of symmetry-breaking boundary conditions and its connection with approximations 
of mean-field type. These features allow the setting up in a very simple and direct 
way of recursion formulae where the dimensionality dependence is explicit, like in 
those of Migdal (1976), and K, has the correct behaviour in the limit d + m .  The 
following most practical choice of systems is already sufficient for this purpose. The 
smaller one consists of the single spin system introduced before and the bigger one 
contains just two nearest-neighbour fluctuating spins, both surrounded by (2d-1) fixed 
boundary spins (as illustrated schematically in figure 1 for d = 3). The rescaling factor 

figure 1. Schematic representation of the simplest choice of clusters for d = 3. Broken 
bonds represent interactions with boundary spins. 

is now put equal to 2'ld. Working out this scheme for a q-state Potts model, with 
reduced Hamiltonian 

with sk = 0, 1, . . ., 4 - 1, we find the following recursion for K :  

this leads to 

K * = K  =- 
4 



Letter to the Editor L295 

Equation (1 1) gives correctly K,  + CO for d + 1. Moreover, for 4 = 2 and d + 00 

1 1  
K,=-+-+O 

2d 4d2 

which agrees, up to second order, with the exact l / d  expansion (Fisher and Gaunt 
1964, Balian et a1 1975). In this respect our transformation is superior to the well 
known Migdal (1976) recursion, which fails to give the correct asymptotic behaviour 
of K,. The result (12) is a consequence of the relationship between our method and 
mean-field approximations, which become exact as d + CO. The values for K,  given 
by (1 1) are also in surprisingly good agreement with those obtained by other exact 
or approximate methods for d = 2 , 3  and 4 and for general 4. The discrepancies are 
always below 6% for d 3 3. It is interesting to notice that, for d = 2 and 4 = 4, equation 
(11) yields the exact value for K,  (Baxter 1973). For d = 3 and 4 = 3, even if the 
actual transition is probably of first order, we obtain K,  = 0.373, which happens to 
be quite close to the value K ,  3 0.367 recently estimated by Monte Carlo methods 
(Blote and Swendsen 1979) and l /q expansion (Kogut and Sinclair 1981). 

A mean-field approximation would give K, = 0.308 in this case (Mittag and Stephen 
1974). The improvement over mean-field values of K ,  is also considerable at d = 4. 
In the Ising model (4 = 2), for example, the mean-field approximation gives K ,  = 0.125, 
which is poorer than our value K ,  = 0.144 with respect to the value K ,  = 0.150 obtained 
by l / d  expansion (Fisher and Gaunt 1964, Balian et af 1975). 

The exponents yT and yH are generally less accurate than the critical couplings in 
our simple approximation. We remark that our scheme is not designed to yield 
accurate exponents for all d, because our length rescaling is anisotropic above d = 1; 
moreover, the hyperscaling condition which is involved in the determination of yH 
breaks down above d = 4. However, for d =z 4, our exponents are of about the same 
quality as those found by Migdal's approximation. 

The above discussion has been restricted to ferromagnetic models, but can be 
generalised straightforwardly to the antiferromagnetic case by making use of boundary 
conditions which respect the translational symmetry of the staggered order parameter. 
The possibility of easily incorporating the order parameter symmetry into the boun- 
dary conditions is another very interesting and promising feature of the present 
approach. 

Our method can also be applied straightforwardly to quantum systems, where the 
variety of available renormalisation techniques is definitely smaller. We finish this 
Letter by discussing an application to d -dimensional spin-3 king systems in a transverse 
field at zero temperature. The Hamiltonian is now of the form 

%(s) = -J 3:s; - H C S: + C sf (13) 
(ii) i i 

where sl and s: are Pauli matrices and H and I' are fields in the z and x directions, 
respectively. Our approach to the ground state of (13) is analogous to that just 
described in the classical statistical case. For d = 1, for example, we again consider 
two finite realisations of the system with proper boundary conditions. The smaller 
system consists of one spin feeling the action of the external fields and interacting 
through a term -2Js'b' with two fixed boundary spins ( lb ' l s  1). Analogously, the 
bigger system consists of two spins interacting with each other and with the external 
fields as in (13). The boundary interaction terms are of the form -Js'b (lbl s 1) for 
each spin. We compute the ground states IO), and IO), of the two systems, and the 
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corresponding magnetisations per spin along the z direction. These must be functions 
of the dimensionless ratios x = J / r  and y = H / r ,  and of b' and b, respectively. We 
then proceed as in the previous cases in order to define a renormalisation mapping 
for the above dimensionless parameters in the neighbourhood of y = 0, using formulae 
of the same form as (7) and (8). In this way we look for critical fixed points, x *  = x,, 
and compute the zero-temperature counterparts of the exponents YT and YH. The 
extension to general d can also be obtained easily in this case by including the effect 
of the dimensionality in the boundary conditions. Our results for x c  are reported in 
table 2, where they are compared with estimates recently obtained by a variational 
approach to the same model (Horn 1981). In that approach, the ground state of small 
systems (clusters) like the ones we are considering, with the same boundary conditions, 
is determined. Then the parameter b is fixed in a Hartree variational scheme such 
as to minimise the expectation value of (13) in a state given by a direct product of 
cluster ground states. 

Table 2. x ,  values for the king model with transverse field. MF 1 and MF 2 indicate the 
results obtained by the variational method with one- and two-spin clusters, respectively 
(Horn 1981). 

MF 1 0.500 0.250 0.167 0.125 
MF 2 0.585 0.260 0.169 0.126 
Our method 0.783 0.300 0.187 0.136 

1" 0.327b 0.199' 0.144' 

a Pfeuty (1970). 
bPfeuty and Elliott (1971). 
'Kogut and Sinclair (1981). 

Table 2 shows clearly that our recipe is also very efficient in the quantum case 
and significantly improves the results over those obtained by mean-field-like calcula- 
tions of the same complexity. For d = 1 we obtain the exponents yT = 0.68 and 
y H  = 1.50 (the exact ones are y T  = 1 and y H  = 1.875). These values and that of K, are 
comparable to yT = 0.68, yH = 1.73 and K, = 1.27 which are obtained using a more 
standard renormalisation group calculation (Jullien et a1 1978, Jullien 1981) involving 
two-spin cells. The nice feature of our recursions is that, at least for K,, they also 
give good qualitative results for d = 3 and 4, whereas the other renormalisation 
methods (Jullien 1981) are essentially not practicable above d = 2. 

Our approach can readily be applied to many other interesting problems. We 
have in mind, for example, systems with continuous spin symmetry, both quantum 
and classical, or with competing interactions. For the latter systems, our choice of 
boundary conditions should allow the easy determination of critical surfaces. 

An extension of our method to describe first-order transitions is also highly 
desirable. Thereby one could possibly overcome the inadequacy of mean-field approxi- 
mations, which always predict first-order transitions in Potts systems with 4 > 2. 

One of us (JOI) wishes to thank the Italian Unit& GNSM del CNR of the Istituto di 
Fisica dell'Universith di Padova for hospitality, and the Belgian NFWO for financial 
support. 
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